Banking Credit Card Spend Prediction

Idea and Concept: Credit scores are designed to make decisions easier for lenders. The bank would like to understand what factors are driving credit card spend. The bank wants to use these insights to calculate credit limit. Credit scores help lenders decide whether or not to approve loan applications and determine what loan terms to offer. The scores are generated by algorithms using information from the credit reports, which summarize the borrowing history of a customer. Objective and approach: The objective of our project is to understand what’s driving the total spend (Primary Card + Secondary card). Given the factors, predict credit limit for the new applicants. Dataset available was in xlsx format. The data have been provided for 5000 customers. Detailed data dictionary has been provided for understanding the data in the data. Data is encoded in the numerical format to reduce the size of the data however some of the variables are categorical. You can find the details in the data dictionary. Project walk-through: In general, the collected data was for 5000 customers and we wished to understand what is driving the total spends of credit card and prioritize the drivers based on the importance. The cloud platform used for the project is GCP. So, after acquiring the data, it was ingested to Google cloud storage and AI platform notebooks are used for the deployment of models. This process included intensive data cleaning or preparation, generating correlation matrix, performing factor analysis; filtering variables using correlation as well as Linear Regression modeling. Finally, we built data visualizations on Power BI. Conclusions: Following are a few conclusions corresponding to the columns. lncreddebt : log of credit card debt in thousands If user has more debt on credit card then his credit card limit is more and likely to have more income. If user has more debt on credit card then s/he spends more with credit card and haven’t repaid. carcatvalue: Primary vehicle price category Person owning economic car likely to have less credit card spend as s/he would prefer more on saving and likely to defer from buying expensive items. debtinc : If debt to income ratio is high person is likely to spend less. — by Samprati Vyawahare

Marketing Lead

Ismile Technologies is looking for someone to join our Sales and Marketing team as a Marketing Lead !   We are looking for a Marketing head who will lead all our marketing activities

Read More »

Inside Sales Manager

Ismile Technologies is looking for someone to join our Sales and Marketing team as a Inside Sales! Are you passionate about pursuing new sales prospects, negotiating deals and maintaining customer

Read More »

Contact us for a quote, help, or to join the team.



(732) 347-6245

About Us

iSmile Technologies is a global technology services company.
(732) 347-6245


+1 (732) 347-6245
241 Jonathan Way
Bolingbrook, IL 60490


2-3-285, Secunderabad Hyderabad 500003


3190 Stocksbridge Ave
Oakville, ON L6M 0A7